

Reladomo: Internal Cache Structure

March 2010

Agenda

Cache structure

Cache configuration and general behavior
Cache invalidation mechanisms
Transactional behavior

3-tier caches

Operation resolution

Relationship resolution

Object cache structure

Cache Structure

Protected by a high performance multi-reader single writer lock

It's a map of Operation -> CachedQuery

Uses soft references

It also stores results of deep fetches: it's therefore not a good idea
to clear the cache randomly

Each class is assigned a query cache and an object cache

Object cache always guarantees uniqueness based on primary
key: the same PK is guaranteed to be the same piece of memory

Object cache is a collection of indices

Query cache remembers the results of queries that the application
has run

Cache Configuration and General Behavior

 Weak references are used with forEachWithCursor and newly
Inserted objects

 Empty at start time

» Populated with whatever queries/objects the application performs

« Can only answer queries that hit the query cache or the object
cache exactly

* Ignores non-unique indices

» Uses soft and weak references

» Loads everything at the start, unless a "loadOperationProvider" is
supplied

« Can answer all queries from the cache (unless in a transaction)

« With a loadOperationProvider, it can be in a fake-full-cache mode.

* Pretends the cache has everything in it.

e Can use both unique and non-unique indices

» Uses regular (hard) references: nothing will be GC'ed

 [t's just a partial cache that does not answer any user queries of
any kind.

Cache Configuration and
General Behavior (Continued)

» Used entirely for unigueing and relatiortship lookup

e Partial cache
 Full cache
e None cache

Cache Invalidation Mechanisms

Clears the query cache

Marks all the partial cache entries as "dirty". Dirty entries cannot
be used to answer a query.

Fairly granular: Insert/update/delete events are broadcast for any
Interested listeners.

Programmatically initiated: Finder.clearQueryCache()

Notification

Time based expiration: if a query or object has been in the cache
longer than the expiration time, it's not trusted

On a per query level, the cache can be bypassed via
findOneBypassCache or setting bypassCache on the list object

E.g. ProductFinder.description().startsWith("s") => CachedQuery
remembers Product class counter and Product.description
attribute update counter

Each CachedQuery object keep a list of per-class and per-attribute
update counter at the time the query ran

Cache Invalidation Mechanisms
Continued

When inserts/deletes happen, the class upfiate counter is
Incremented

Updates to particular attributes update the attribute update counter
Cached query is only considered valid if its update counters are
current.

Obijects collected via the GC (partial/none cache) : can only
happen if no other references exist

Common invalidations mechanisms:

Query cache update counters

Object cache

Transactional Behavior

The query cache is empty when the transaction starts

This query cache is not shared with non-transactional queries or
other transactions

Result: queries prior to the transaction are not trusted. Queries
within the transaction are trusted within the limits of update counter
expiration

Unless optimistic locking has been requested for an object. In
that case, the cache is trusted, but update/delete statements
have extra clauses to ensure the state hasn't changed since the
application retrieved the object originally

The database has to know that the object is in a transaction to
provide correct ACID behavior

No object is returned from the object cache without a read from the
database

It's best to do the reading inside the transaction, otherwise the
object is refreshed upon access

When a transaction updates an object, the committed version is
kept separate

Transactional Behavior (Continued)

* Non-transactional threads don't see the transactional (changed)
state

* Two transactions can't write to the same object simultaneously

 When an object is inserted in a transaction, it's not added to the
main cache for the class

» Instead, it's added to a per-transaction delta cache. Ditto for delete

* The delta cache takes precedence over the main cache for that
transaction

 The transaction has a query cache for all classes

» Each object knows if it's participating in a transaction (shared or
exclusive)

* Object cache keeps delta insert/delete indices

10

3-tier caches

By default it's a partial cache and no configuration is required

The default can be overriden in the runtime configuration

The client tries to answer queries from its cache first before hitting

the middle tier

The server cache has to be configured

The server can chose to answer the client's queries from its cache
when appropriate

The client starts the transaction and creates a proxy transaction on
the server side

The server is holding onto the actual transactional database
connection

The cache behaves as Iif the client was directly connected to the
database

The client has it's own local cache

The server also has a cache

3-tier transactional behavior

11

Operation Resolution

Query cache only looks for exact matches. It will not returned
expired CachedQueries

A partial cache can only answer queries that map onto its unique
indices and have a complete hit.

A full cache will answer all queries, so long as no transaction is
underway

If no index is found, we give up in a partial cache scenario, or we
get the entire contents of the cache in a full cache setup

Operation has 3 methods: applyOperationToFullCache(),
applyOperationToPartialCache(),

One of the first two methods is called by the portal

Operation then finds the most selective index to start with and
does an index lookup.

Example: Cache has 3 indices:
Index 1 attributes: a
Index 2 attributes: a,b

12

Operation Resolution (Continued)

Index 3 attributes: c

Queryisa=1&b=2&c=3.

If Index 2 is more selective than Index 3, we do index lookup for (a
=1, b = 2), then filter the results for c = 3

General flow: hit the query cache, then the object cache, then the
server

Object cache guery resolution

It then filters the results based on the rest of the operation using
applyOperation(List)

Relationships used in operations are typically resolved through
auto-generated indices

All current index implementations are hash based: can only

resolve "=" and "in

13

Relationship Resolution

private static final Extractor[] fororder = new
Extractor|]

{
Order | t enfFi nder. orderl d()};

_portal = OrderFinder.getMthraQojectPortal ();

_result = (Order)
_portal.get AsOneFronCache(_data, fororder);

* For queries that map to unique indices, the query cache is only
used for negative (non-existent) hits

» A one-to-one or many-to-one relationships uses a fast path lookup
on the cache directly
» A fast path lookup creates no garbage

 The code is essentially doing an index lookup

14

Relationship Resolution (Continued)

« |f the fast path fails to produce a result, we then create an
operation and do a normal loopkup

« A one-to-many or many-to-many relationship creates a list and
operation and resolves it normally

» During a deep fetch, the query cache is pre-populated with the
operations and results that map the objects in the list to their
related objects

» Therefore, a x-to-many relationship usually just hits the query
cache

15

Object Cache Structure

Hashing Strategy

An index is a searchable set (not a map!!!)

A cache is not a map. It's a collection of indices

Entry objects are Weak or Soft referenced. An entry can also be
marked as dirty

Weak references are used with forEachWithCursor and new
Inserts

FullUniquelndex: similar to a Trove THashSet, but is searchable

PartialPrimaryKeylndex: similar in structure to a HashMap (entry
objects)

PartialWeakUniquelndex: used for partial cache indices other than
the primary key

NonUniqueldentityindex: only used with full caches. It's a compact
searchable set that returns a list

FullSemiUniqueDatedIndex: holds onto the data objects, not the
(wrapper) business objects

16

Object Cache Structure (Continued)

« PartialSemiUniqueDatedindex: holds weak references to the data
objects

* NonUniquelndex: full cache only. Holds onto the data objects and
returns a list

« DatedObjectindex: holds onto the business objects using soft or
weak references

e Core concepts:

« Non-Dated indices:

« Dated indices:

17

FullUniquelndex

Hashing Strategy: usually created from a list of Reladomo
attributes (ExtractorBasedHashingStrategy)

Collision resolution is simpler than trove (quadratic probing)

Unlike a JDK set (which has no get method)
Search method by the same object class: getFromData

Don't use the get() methods, as they are specialized for single
attribute searches

remove and contains work as you would expect

Special feature: can search by a different class using the
get(object, Extractor[]) method

Generally the only class from the Reladomo cache package that's
useful outside

Used in multi-threaded loader for matching

Can be used in application code for matching as well

Structurally very similar to a Trove THashSet

However, it's searchable

18

SemiUniqueDatedIndex

The business object is potentially instantiated if it didn't exist
before

It's an unusual index for the dated data

It simultaneously holds two hash structures (one fully dated and
unique, the other not

An earlier implementation was using composition of two sets and it
wasn't working well

A dated cache first finds the data and then the business objects for
that data

The business object has the uniqueness guarantee, not the data
object

19

SemiUniqueDatedIndex Code

public class Partial Sem Uni queDat edl ndex i npl enent s
Sem Uni queDat edl ndex

{
private ExtractorBasedHashStrat egy
hashSt r at egy;
private ExtractorBasedHashStrat egy
sem Uni queHashSt r at egy;
private Sem Uni queEntry[] nonDat edTabl e;
private SingleEntry[] table;

}

private static class SingleEntry extends
WeakRef er ence
| npl enent s Sem Uni queEntry

private int pkHash;
private SingleEntry pkNext;
private i nt sem Uni queHash;

20

SemiUniqueDatedIndex Code (Continued)

private Sem Uni queEntry sem Uni queNext ;

}

private i nterface Sem Uni queEntry extends
Sem Uni queQbj ect

{
}

private static class MiultiEntry i npl enents
Sem Uni queEntry
{
private int sem Uni queHash;
private SingleEntry[] |ist;
private int size;
private Sem Uni queEntry sem Uni queNext ;

SemiUniqueDatedIndex Instance Diagram

Mon-Dated table MultiEntry / MUIEEntry list
SemiUniquelndex: null list reference
null refarence

reference /
Dated table o] \

nul SingleEntry _—*| SingleEntry
reference /m? weak ref
null /’/ ¥)
reference | — 4 Account AccountData AccountData
iz id = 12345678 \id = 12345678
Dated object index: bizDt = 11152009 from = 11172009 | | %om = 21212009
Business table Account thru = 2172009 tf}(u = infinity
null reference
reference bizDt = 1/20/2009 Account |
reference raferance
reference bizDt = 41152009

	
 Reladomo: Internal Cache Structure

	
 Agenda

	
 Cache Structure

	
 Cache Configuration and General Behavior

	
 Cache Invalidation Mechanisms

	
 Transactional Behavior

	
 3-tier caches

	
 Operation Resolution

	
 Relationship Resolution

	
 Object Cache Structure

	
 FullUniqueIndex

	
 SemiUniqueDatedIndex

	
 SemiUniqueDatedIndex Code

	
 SemiUniqueDatedIndex Instance Diagram

