

Reladomo: Internal Cache Structure

March 2010

2

Agenda

• Cache structure

• Cache configuration and general behavior

• Cache invalidation mechanisms

• Transactional behavior

• 3-tier caches

• Operation resolution

• Relationship resolution

• Object cache structure

3

Cache Structure

• Protected by a high performance multi-reader single writer lock

• It's a map of Operation -> CachedQuery

• Uses soft references

• It also stores results of deep fetches: it's therefore not a good idea
to clear the cache randomly

• Each class is assigned a query cache and an object cache

• Object cache always guarantees uniqueness based on primary
key: the same PK is guaranteed to be the same piece of memory

• Object cache is a collection of indices

• Query cache remembers the results of queries that the application
has run

4

Cache Configuration and General Behavior

• Weak references are used with forEachWithCursor and newly
inserted objects

• Empty at start time
• Populated with whatever queries/objects the application performs
• Can only answer queries that hit the query cache or the object

cache exactly
• Ignores non-unique indices
• Uses soft and weak references

• Loads everything at the start, unless a "loadOperationProvider" is
supplied

• Can answer all queries from the cache (unless in a transaction)
• With a loadOperationProvider, it can be in a fake-full-cache mode.
• Pretends the cache has everything in it.
• Can use both unique and non-unique indices
• Uses regular (hard) references: nothing will be GC'ed

• It's just a partial cache that does not answer any user queries of
any kind.

5

Cache Configuration and
General Behavior (Continued)

• Used entirely for uniqueing and relationship lookup

• Partial cache

• Full cache

• None cache

6

Cache Invalidation Mechanisms

• Clears the query cache

• Marks all the partial cache entries as "dirty". Dirty entries cannot
be used to answer a query.

• Fairly granular: Insert/update/delete events are broadcast for any
interested listeners.

• Programmatically initiated: Finder.clearQueryCache()

• Notification

• Time based expiration: if a query or object has been in the cache
longer than the expiration time, it's not trusted

• On a per query level, the cache can be bypassed via
findOneBypassCache or setting bypassCache on the list object

• E.g. ProductFinder.description().startsWith("s") => CachedQuery
remembers Product class counter and Product.description
attribute update counter

• Each CachedQuery object keep a list of per-class and per-attribute
update counter at the time the query ran

7

Cache Invalidation Mechanisms
(Continued)

• When inserts/deletes happen, the class update counter is
incremented

• Updates to particular attributes update the attribute update counter

• Cached query is only considered valid if its update counters are
current.

• Objects collected via the GC (partial/none cache) : can only
happen if no other references exist

• Common invalidations mechanisms:

• Query cache update counters

• Object cache

8

Transactional Behavior

• The query cache is empty when the transaction starts
• This query cache is not shared with non-transactional queries or

other transactions
• Result: queries prior to the transaction are not trusted. Queries

within the transaction are trusted within the limits of update counter
expiration

• Unless optimistic locking has been requested for an object. In
that case, the cache is trusted, but update/delete statements
have extra clauses to ensure the state hasn't changed since the
application retrieved the object originally

• The database has to know that the object is in a transaction to
provide correct ACID behavior

• No object is returned from the object cache without a read from the
database

• It's best to do the reading inside the transaction, otherwise the
object is refreshed upon access

• When a transaction updates an object, the committed version is
kept separate

9

Transactional Behavior (Continued)

• Non-transactional threads don't see the transactional (changed)
state

• Two transactions can't write to the same object simultaneously

• When an object is inserted in a transaction, it's not added to the
main cache for the class

• Instead, it's added to a per-transaction delta cache. Ditto for delete

• The delta cache takes precedence over the main cache for that
transaction

• The transaction has a query cache for all classes

• Each object knows if it's participating in a transaction (shared or
exclusive)

• Object cache keeps delta insert/delete indices

10

3-tier caches

• By default it's a partial cache and no configuration is required

• The default can be overriden in the runtime configuration

• The client tries to answer queries from its cache first before hitting
the middle tier

• The server cache has to be configured

• The server can chose to answer the client's queries from its cache
when appropriate

• The client starts the transaction and creates a proxy transaction on
the server side

• The server is holding onto the actual transactional database
connection

• The cache behaves as if the client was directly connected to the
database

• The client has it's own local cache

• The server also has a cache

• 3-tier transactional behavior

11

Operation Resolution

• Query cache only looks for exact matches. It will not returned
expired CachedQueries

• A partial cache can only answer queries that map onto its unique
indices and have a complete hit.

• A full cache will answer all queries, so long as no transaction is
underway

• If no index is found, we give up in a partial cache scenario, or we
get the entire contents of the cache in a full cache setup

• Operation has 3 methods: applyOperationToFullCache(),
applyOperationToPartialCache(),

• One of the first two methods is called by the portal

• Operation then finds the most selective index to start with and
does an index lookup.

• Example: Cache has 3 indices:

• Index 1 attributes: a

• Index 2 attributes: a,b

12

Operation Resolution (Continued)

• Index 3 attributes: c

• Query is a = 1 & b = 2 & c = 3.

• If Index 2 is more selective than Index 3, we do index lookup for (a
= 1, b = 2), then filter the results for c = 3

• General flow: hit the query cache, then the object cache, then the
server

• Object cache query resolution

• It then filters the results based on the rest of the operation using
applyOperation(List)

• Relationships used in operations are typically resolved through
auto-generated indices

• All current index implementations are hash based: can only
resolve "=" and "in"

13

Relationship Resolution

private static final Extractor[] fororder = new
 Extractor[]
{
 OrderItemFinder.orderId()};

 …

 _portal = OrderFinder.getMithraObjectPortal();

 _result = (Order)
 _portal.getAsOneFromCache(_data, fororder);

• For queries that map to unique indices, the query cache is only
used for negative (non-existent) hits

• A one-to-one or many-to-one relationships uses a fast path lookup
on the cache directly

• A fast path lookup creates no garbage
• The code is essentially doing an index lookup

14

Relationship Resolution (Continued)

• If the fast path fails to produce a result, we then create an
operation and do a normal loopkup

• A one-to-many or many-to-many relationship creates a list and
operation and resolves it normally

• During a deep fetch, the query cache is pre-populated with the
operations and results that map the objects in the list to their
related objects

• Therefore, a x-to-many relationship usually just hits the query
cache

15

Object Cache Structure

• Hashing Strategy

• An index is a searchable set (not a map!!!)

• A cache is not a map. It's a collection of indices

• Entry objects are Weak or Soft referenced. An entry can also be
marked as dirty

• Weak references are used with forEachWithCursor and new
inserts

• FullUniqueIndex: similar to a Trove THashSet, but is searchable

• PartialPrimaryKeyIndex: similar in structure to a HashMap (entry
objects)

• PartialWeakUniqueIndex: used for partial cache indices other than
the primary key

• NonUniqueIdentityIndex: only used with full caches. It's a compact
searchable set that returns a list

• FullSemiUniqueDatedIndex: holds onto the data objects, not the
(wrapper) business objects

16

Object Cache Structure (Continued)

• PartialSemiUniqueDatedIndex: holds weak references to the data
objects

• NonUniqueIndex: full cache only. Holds onto the data objects and
returns a list

• DatedObjectIndex: holds onto the business objects using soft or
weak references

• Core concepts:

• Non-Dated indices:

• Dated indices:

17

FullUniqueIndex

• Hashing Strategy: usually created from a list of Reladomo
attributes (ExtractorBasedHashingStrategy)

• Collision resolution is simpler than trove (quadratic probing)

• Unlike a JDK set (which has no get method)

• Search method by the same object class: getFromData

• Don't use the get() methods, as they are specialized for single
attribute searches

• remove and contains work as you would expect

• Special feature: can search by a different class using the
get(object, Extractor[]) method

• Generally the only class from the Reladomo cache package that's
useful outside

• Used in multi-threaded loader for matching

• Can be used in application code for matching as well

• Structurally very similar to a Trove THashSet

• However, it's searchable

18

SemiUniqueDatedIndex

• The business object is potentially instantiated if it didn't exist
before

• It's an unusual index for the dated data

• It simultaneously holds two hash structures (one fully dated and
unique, the other not

• An earlier implementation was using composition of two sets and it
wasn't working well

• A dated cache first finds the data and then the business objects for
that data

• The business object has the uniqueness guarantee, not the data
object

19

SemiUniqueDatedIndex Code

public class PartialSemiUniqueDatedIndex implements
 SemiUniqueDatedIndex
{
 private ExtractorBasedHashStrategy
 hashStrategy;
 private ExtractorBasedHashStrategy
 semiUniqueHashStrategy;
 private SemiUniqueEntry[] nonDatedTable;
 private SingleEntry[] table;
}

private static class SingleEntry extends
 WeakReference
 implements SemiUniqueEntry
{
 private int pkHash;
 private SingleEntry pkNext;
 private int semiUniqueHash;

20

SemiUniqueDatedIndex Code (Continued)

 private SemiUniqueEntry semiUniqueNext;
}

private interface SemiUniqueEntry extends
 SemiUniqueObject
{
 ...
}

private static class MultiEntry implements
 SemiUniqueEntry
{
 private int semiUniqueHash;
 private SingleEntry[] list;
 private int size;
 private SemiUniqueEntry semiUniqueNext;
}

21

SemiUniqueDatedIndex Instance Diagram

22

	
 Reladomo: Internal Cache Structure

	
 Agenda

	
 Cache Structure

	
 Cache Configuration and General Behavior

	
 Cache Invalidation Mechanisms

	
 Transactional Behavior

	
 3-tier caches

	
 Operation Resolution

	
 Relationship Resolution

	
 Object Cache Structure

	
 FullUniqueIndex

	
 SemiUniqueDatedIndex

	
 SemiUniqueDatedIndex Code

	
 SemiUniqueDatedIndex Instance Diagram

