


Reladomo: An Object
Relational Mapping Framework
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Agenda

• Chaining logic

• Object oriented, compiled time checked query language

• Transparent multi-schema support

• Object oriented batch operations

• Unit testable code

• Flexible object relationship inflation

• ...

• An introduction to Reladomo

• Why another persistence framework?

• Focus on "why" and "how" of various features

• User Driven Presentation: You decide the particular topics

• Future directions
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Reladomo Features

• Metadata driven

• Code generation

• Object oriented query mechanism

• Junit integration

• Chaining

• Caching: Bi-level, transactionally guaranteed, keyless

• Flexible relationships

• Collections based operations (mass insert/update/delete; deep
fetch)

• Multi-schema horizontally scaled databases

• Database vendor independence

• Temp Object (temp tables)

• Embedded Value Objects

• Natural handling of composite keys
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Reladomo Features

• 2-tier and 3-tier (middle tier) operation

• Notification

• Primary Key Generation

• DDL Generator

• Database to XML Generator

• RUNS (Replication Update Notification System) integration

• Fast Sybase/UDB inserts

• Sybase bulk insert (pure Java)

• GS Integrator Transport

• Global Time support

• Documentation: javadoc, xsddoc, docbook

• Transaction support (local and 1.5 Phase XA via JOLT)

• Domain class diagram generation
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Metadata Driven

Why?

• Declarative

• DRY Principle: adding an attribute should ideally be a single
change

• Secondary uses: DDL generation, Visualization

How?

• XML

• Custom SQL-like relationship language
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Metadata Driven

Example:

<MithraObject objectType="transactional"
>
      
  <PackageName>com.gs.fw.para.domain.desk.product</
PackageName>
        <ClassName>Product</ClassName>
        <DefaultTable>PRODUCT</DefaultTable>
      
  <SourceAttribute name="acmapCode" javaType="String"
/>
      
  <Attribute name="productId" javaType="int" columnName="PROD_SEC_ID_I" primaryKey="true"
                 
  primaryKeyGeneratorStrategy="Max"
/>
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Metadata Driven (Continued)

      
  <Attribute name="gsn" javaType="String" columnName="PROD_SEC_NBR_C" maxLength="15"
/>
      
  <Attribute name="cusip" javaType="String" columnName="PROD_SEC_CUSIP_C" maxLength="15" nullable="true"
/>
      
  <Attribute name="issuerName" javaType="String" columnName="PROD_GEN_ISSUER_N" maxLength="30"
                   truncate="true"
/>
      
  <Attribute name="issuerNumber" javaType="int" columnName="PROD_ISSUER_NUMBER" nullable="true"
/>
      
  <Attribute name="description" javaType="String" columnName="PROD_DESC_1_C" maxLength="60" poolable="false"
                   truncate="true"
/>
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Metadata Driven (Continued)

      
  <Relationship name="synonyms" relatedObject="ProductSynonym" cardinality="one-
to-many"
                    
  reverseRelationshipName="product"
>ProductSynonym.productId = this.productId
        </Relationship>
      
  <Relationship name="history" relatedObject="ProductHistory" cardinality="one-
to-many"
                    
  reverseRelationshipName="product"
>this.productId = ProductHistory.productId
        </Relationship>
      
  <Relationship name="currencySynonym" relatedObject="ProductSynonym" cardinality="one-
to-one"
>
            ProductSynonym.productId =
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Metadata Driven (Continued)

            this.productId and ProductSynonym.type
 = "CID"
        </Relationship>
      
  <Relationship name="parentProduct" relatedObject="Product" cardinality="many-
to-one"
>
            ProductRelation.productChildId =
 this.productId
            and Product.productId =
 ProductRelation.productParentId and
 ProductRelation.relationshipType in (3200,
            3214, 9800, 3201, 3202, 3207,
            3208, 3209, 3210)
        </Relationship>
        <Index name="byGsn" unique="true"
>gsn</Index>
    </MithraObject>
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Code Generation

Why?

• DRY: use the metadata to its fullest

• Quality: code written by domain experts

• Consistency: code is the same for all objects. Fixes/enhancements
are propagated to all instances.

• Productivity: developers are freed to code the business logic
instead of plumbing

How?

• JAXB XML parser: fast, easy to use

• Java based templates (similar to Eclipse JET): no need to learn
another syntax. Supported by existing IDE’s (code completion,
syntax highlighting, etc)

• JavaCC based relationship expression parser

• Extensible style code generation: generate abstract classes.
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Object Oriented Query Language

• Compile time checked: if something changes, problems will be
found earlier

• No strings: easy to reuse and abstract

• Overcomes some shortcomings of SQL: "Do not repeat
yourself" (DRY) principle applied to relationships between objects

• Developers think in terms of objects and their relationships, not
tables and joins.

• In-line SQL is difficult to write, harder to reader and nearly
impossible to maintain

• In-line SQL is difficult to abstract and reuse

• String based solutions (e.g. HQL, OQL, EQL, etc) do not solve
these issues

• Reladomo uses an object oriented query language that fits
comfortably within the programming environment:

12



In-line SQL Example

public void selectTransactions()
throws TransactionQueryException, SQLException,
 CriteriaException
{
    this.createUpdateStatementWrapper();
    try
    {
        StringBuffer sb = new StringBuffer();
        sb.append(" select BTV.*, NPV.NPV, F.RATE,
 NPV.RAW_UNREAL, NPV.DISC_UNREAL, NPV.ADJ_NPV ");
        sb.append(" into #tran_union ");
        sb.append(" from BASIC_TRANSACT_VIEW BTV,
 #accounts A, FX_FORWARD_NPV NPV,
        SECDB_FOREX_RATE F, TCURRENCY C ");
        sb.append(" where BTV.ACCT_ID = A.ACCT ");
        sb.append(" and BTV.TRAN_ID = NPV.TRAN_ID
 ");
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In-line SQL Example (Continued)

        sb.append(" and BTV.TRUE_STATUS = 'ACTIVE'
 ");
        sb.append(" and BTV.OUT_Z >= ? ");
      
  this.addTimestampParameter(this.getBasicDateProvider().fetchCheckPoint(this.getBasicDateProvider().getAsOfDate()));
        sb.append(" and BTV.IN_Z < ? ");
      
  this.addTimestampParameter(this.getBasicDateProvider().fetchCheckPoint(this.getBasicDateProvider().getAsOfDate()));
        sb.append(" and BTV.TRAN_SETTLE_D > ? ");
      
  this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
        sb.append(" and NPV.FROM_Z < ? ");
      
  this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
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In-line SQL Example Continued

sb.append(" and NPV.THRU_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
sb.append(" and NPV.IN_Z < ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append(" and NPV.OUT_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append( "and F.CURRENCY = 'USD' ");
sb.append(" and BTV.TRAN_SETTLE_D = F.VALUE_DATE");
sb.append(" and F.FROM_Z < ? ");
this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
sb.append(" and F.THRU_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
sb.append(" and F.IN_Z < ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append(" and F.OUT_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append(" and BTV.PROD_SEC_ID_I =
 C.PROD_SEC_ID_I");
this.getStatementWrapper().setStatementString(sb.toString());
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In-line SQL Example Continued (Continued)

this.executeUpdateStatement();
}
catch (DataStoreException e)
{
this.getLogger().error(e);
}
}
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Object Oriented Query Example

public List buildOperation
 (PnlObjectOperationProvider pnlObjectOpProvider,
 ProductOperationProvider
productOpProvider, ParaDate milestoneBusinessDate,
 ActivityReviewManager activityReviewManager)
{
    this.activityReviewManager =
 activityReviewManager;
    ParaTransactionList basicTranList = new
 ParaTransactionList();
    List tranList
 = this.buildBusinessDateBasicTransactionOperation(pnlObjectOpProvider,
 productOpProvider,
    milestoneBusinessDate);
    for(int i = 0; i< tranList.size(); i++)
    {
        ParaTransactionList itemList =
 (ParaTransactionList)tranList.get(i);
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Object Oriented Query Example (Continued)

        Timestamp busDate = new
 Timestamp(milestoneBusinessDate.getTime());
        businessDate = busDate;
        Operation op =
 itemList.getOperation().and(ParaTransactionFinder.status().eq("ACTIVE"))
           
 .and(ParaTransactionFinder.settleDate().greaterThan(busDate));

        op =
 op.and(getStringOperation(getActivityReviewManager().getCounterPartyNumber(),ParaTransactionFinder.customerTransaction().crossAccount()));
        basicTranList.add(new
 ParaTransactionList(op));
       
 basicTranList.deepFetch(ParaTransactionFinder.underlierTransactions());
       
 basicTranList.deepFetch(ParaTransactionFinder.customerTransaction());
    }
    return basicTranList;
}
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Object Oriented Query Language

How?

• Atomic (equals, in, greaterThan, lessThan, etc)

• Mapped (traversing a relationship, aka join)

• Boolean (and, or)

• Miscellaneous (all, absolute value, etc)

• Non-trivial: Large part of the Reladomo code base (> 20%)

• Various types of operations

• Before evaluation of a complex operation, it’s simplified.

• Operation is evaluated against the cache (if applicable) and then
the server

• SQL generation can be a bit tricky (especially for dated objects)
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Testable Code

Why?

• Testable code has become an indispensable part of our
development methodology

• Persistent objects are traditionally difficult to unit test because
they’re tied to a database

• The core Reladomo code was written using test driven
development

How?

• The crux of the code is processing of data.

• Reladomo-enabled testing covers > 80% of the code.

• Result: shortened development time, highly reliable code with very
few bugs encountered in production.

• Create a test resource: text file for initial data + in memory SQL
database (H2)

• Reladomo provides a simple testing framework that fits right into
Junit.
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Testable Code (Continued)

• All operations are supported: query, insert, update, delete,
chaining, etc.

• Examples: Large production application
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Flexible Relationships

Why?

• Relationships between objects can take interesting forms in real
life.

• Can dramatically reduce IO to the database. Can also be used for
interesting searches.

• Two common examples: a parametrized relationship, or a
relationship with extra conditions.

How?

• This feature works because of Reladomo’s dynamic relationship
resolution. Examples: Relationships from Product

<Relationship name="parentProduct" relatedObject="Product" cardinality="many-
to-one"
>
    ProductRelation.productChildId =
 this.productId and Product.productId =
    ProductRelation.productParentId and
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Flexible Relationships (Continued)

    ProductRelation.relationshipType in (3200,
 3214, 9800, 3201, 3202, 3207, 3208, 3209, 3210,
 3211)
</Relationship>
<Relationship name="synonymItem" relatedObject="ProductSynonym" cardinality="one-
to-one"
              parameters="String sym"
>
    ProductSynonym.productId = this.productId and
 ProductSynonym.type = {sym}
</Relationship>
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Chaining

Chaining is an umbrella term that describes a way of storing time
series data, audit data or both in a relational database. The different
versions (audit only, time series only and bitemporal) are described
below.

• 1.Audit Only

• 2.Business Time Series Only

• 3.Both Audit and Business Time Series: Bitemporal
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Chaining

Why?

• Chained objects are queried and persisted differently

• Chained objects don’t have the same operations (insert, update,
delete) as regular objects

• Chained objects support more complicated operations: insert,
insert until, update, update until, increment, increment until,
terminate.

• Chaining is complicated

• The algorithm is only maintainable if it’s managed from one single
piece of code

• Chaining affects the core of object-relational mapping. It is very
difficult to implement chaining as an add-on to an existing OR
framework.
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Chaining

How?

• Not a large piece of code (6%), but complicated: 30% of test code
is just for chaining

• Information held in a single object is usually not enough to
calculate new state

• Object delegates complex operations to the TemporalDirector

• TemporalDirector uses TemporalContainer to calculate new state

• TemporalContainer keeps data for a range of dates. Can fetch
more from the database, on demand.

• TemporalContainers are held in the transactional cache and
discarded at end of transaction
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Audit Only Chaining

Here is an example of this type of audit trail for an account object.
The account was created on 1/1/2005:

On 2/5/2005, the trader changes to Jane Doe:
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Audit Only Chaining

• The IN and OUT columns represent real time. They have nothing
to do with the business calendar.

• The interesting row (meaning, the row we think has the correct
information) always has OUT = Infinity

• There is no way to alter the history. The only allowed update
operation to a row is to change its OUT value from infinity to
current time.
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On 1/1/2005, we buy 100 shares of a product. We always do our
accounting at 6:30 pm (even if it takes several hours, our business
calendar is set to 6:30 pm):

On 2/5/2005, we buy another 100 shares:

So far, this looks very much like the first example. To clarify the
difference, we can do an "as of trade". On 2/10/2005, we find out that
we missed a trade for 50 shares that happened on 1/15/2005:
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Let’s consider the same example

We now add 100 on 2/5/2005:

On 2/10/2005, we find a trade that was done on 1/15/2005 for 50
shares:
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(Continued)
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Collections Based Operations

• Prepared statement batching: reuse the same statement multiple
times. X 2 performance improvement

• Use of SQL statements that update more than one row at a time. X
50 performance improvement

• Two types of batching:

• Collections are a core of the Reladomo API.

• Example mass delete:

Operation op =
 SwapPriceFinder.sourceId().eq( id ); op =
 op.and(
   
 SwapPriceFinder.businessDate().eq( busDate ) );

op =
 op.and( SwapPriceFinder.feedNumber().eq( feedNumber ) );

SwapPriceList priceList = new SwapPriceList(op);
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Collections Based Operations (Continued)

priceList.deleteAll();

• 65,583 rows took 562 seconds without deleteAll implementation.
With the implementation it took 12 seconds.

• Deep Fetching: a better approach to relationship resolution

• Collections based operations make Reladomo suitable for most
types of large retrievals (report style), OLTP, and batch style
processing.
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Collections Based Operations

Why?

• Reduce object relational impedance mismatch

• Reduced chattiness

• Performance

How?

• Investigating pure Java alternative to file generation

• List object used as gateway to collective operations

• Special SQL generation for mass/bulk operations

• Deep fetch uses joins: solves 1+N problem

• BCP support for Sybase: 5x faster than plain insert
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Transparent Multi-schema Support

• For scalability, we’ve partitioned ledger data into a large number of
databases (about 150). The schema is identical in these database,
but the data is different.

• The class of objects can therefore be retrieved from multiple
sources

• Traditional ORMs have difficulty keeping objects tied to the original
source. This is particularly a problem with caching.

• We even have transactions that read from one database and write
to another. That is, the access patterns are not necessarily one-
database-at-a-time.

• Support for this is built into the core of Reladomo.
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Transparent Multi-schema Support

Why?

• Transaction 123 in Database A can be 100 shares of IBM

• Transaction 123 in Database B can be 300 shares of BMW

• When both objects are loaded, they must not be confused.

• How an object is identified must include where the object came
from:

• Enables horizontally scalable solutions

How?

• Metadata includes special attribute (SourceAttribute)

• All operations (find, insert, update, delete) use this attribute to
obtain the proper connection.
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Caching

Why?

• Uniquing: an object with a given primary key must correspond to
exactly one memory location

• Performance

• Reduced IO and latency

How?

• Can be configured as none, partial (dynamic) or full on a per class
basis.

• Can be bypassed on a per query basis.

• Cache is a searchable set of indices. An index is a keyless set.

• Queries are cached in the query cache. Also facilitates deep
fetched relationships.

• Transaction disregards pre-transaction cached results.

• Partial cache can only answer queries based on unique identifiers.
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Three Tier Operation

Why?

• User ID must not be able to access database directly (especially
write)

• Batch/App ID must not be used from unauthorized IP’s (see PACT
AppFilter)

• For a large, semi-mobile user community, maintaining IP lists is
undesirable and opens iSQL hole

• Security (fat client applications):

• Connection sharing: database connections can be expensive.
Many users can share same connection.

How?

• Third tier acts like a relational source. Supports relational-like
operations: find, insert, update, delete.

• No object graphs. Not a complex object source. Serializaton based
on metadata. Wire format looks like a result set.

• Lightweight: can be configured as pass-through with no caching.
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Three Tier Operation (Continued)

• Remoting API must be implemented by application.
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Notification

Why?

• Allow multiple VM’s to independently update data.

• Polling considered harmful ("Are we there yet?" syndrome)

How?

• At the end of a transaction, message is constructed. Message
contains the primary keys for objects that were inserted/updated/
deleted. Message is sent to a topic that encodes the database
identity.

• Listeners only register interest in databases they have accessed.
Upon receipt of message, any objects (if any) are marked as dirty.

• Asynchronous message processing to avoid messaging and IO
bottlenecks in application’s main flow.

• Messaging API can be implemented by application. RV
implementation provided.

• Notification is entirely independent of three tier operation. Most
important production uses are in two tier scenarios. Notification is
off by default.
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Notification

Examples:

• Posting Engine creates an account. Adjustment server processes
a request for the trial or income function containing the new
account some time later.

• Age Inventory Firm to Firm processor on Desk A updates
age transfer status. Age Inventory Firm to Firm processor on
corresponding desk will see new status.

• Posting Engine updates feed status. Notification is sent for the
status object. Next time a controller queries for status, they will not
get stale results.
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RUNS Integration

Why?

• Replication from remote sources can cause staleness.

• For low volume update data (e.g. account data) hitting database all
the time is wasteful.

• Object metadata can be used the same way with RUNS tables as
regular tables.

• Staleness typically exasperated because objects are configured as
read only.

How?

• Application configuration flags objects that are replicated.

• Background thread reads RUNS queue tables periodically.

• Send notification based on primary key found in RUNS child tables

• Clear RUNS tables.

• Fully optional. Can be setup as a lightweight, independent
process.
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DDL Generator

Why?

• Metadata contains all necessary data. DRY: get the DDL from the
metadata.

• Productivity: DDL files are hard to write and maintain.

• Junior developers have problems writing DDL files, especially
index creation.

How?

• Based on the metadata and target database type, emit DDL.

• Hardest part is generating decent indices. Primary key index is
easy. Foreign key indices are based on defined relationships.
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Generate metadata from existing schema

Why?

• Large legacy systems can be converted quickly and painlessly.

How?

• Create object definition from table definition.

• Choose object primary key based on unique index.
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Long term plan

• Feedback is the most valuable thing. What’re we doing right or
wrong?

• What features would make your code better?

• If you find a bug, a test case would be exceptionally helpful.

• If you’re feeling adventurous, contribute code!

• The direction of Reladomo is set by its users.

• Help us make Reladomo a better product:
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