

Reladomo: An Object
Relational Mapping Framework

2

Agenda

• Chaining logic

• Object oriented, compiled time checked query language

• Transparent multi-schema support

• Object oriented batch operations

• Unit testable code

• Flexible object relationship inflation

• ...

• An introduction to Reladomo

• Why another persistence framework?

• Focus on "why" and "how" of various features

• User Driven Presentation: You decide the particular topics

• Future directions

3

Reladomo Features

• Metadata driven

• Code generation

• Object oriented query mechanism

• Junit integration

• Chaining

• Caching: Bi-level, transactionally guaranteed, keyless

• Flexible relationships

• Collections based operations (mass insert/update/delete; deep
fetch)

• Multi-schema horizontally scaled databases

• Database vendor independence

• Temp Object (temp tables)

• Embedded Value Objects

• Natural handling of composite keys

4

Reladomo Features

• 2-tier and 3-tier (middle tier) operation

• Notification

• Primary Key Generation

• DDL Generator

• Database to XML Generator

• RUNS (Replication Update Notification System) integration

• Fast Sybase/UDB inserts

• Sybase bulk insert (pure Java)

• GS Integrator Transport

• Global Time support

• Documentation: javadoc, xsddoc, docbook

• Transaction support (local and 1.5 Phase XA via JOLT)

• Domain class diagram generation

5

Metadata Driven

Why?

• Declarative

• DRY Principle: adding an attribute should ideally be a single
change

• Secondary uses: DDL generation, Visualization

How?

• XML

• Custom SQL-like relationship language

6

Metadata Driven

Example:

<MithraObject objectType="transactional"
>

 <PackageName>com.gs.fw.para.domain.desk.product</
PackageName>
 <ClassName>Product</ClassName>
 <DefaultTable>PRODUCT</DefaultTable>

 <SourceAttribute name="acmapCode" javaType="String"
/>

 <Attribute name="productId" javaType="int" columnName="PROD_SEC_ID_I" primaryKey="true"

 primaryKeyGeneratorStrategy="Max"
/>

7

Metadata Driven (Continued)

 <Attribute name="gsn" javaType="String" columnName="PROD_SEC_NBR_C" maxLength="15"
/>

 <Attribute name="cusip" javaType="String" columnName="PROD_SEC_CUSIP_C" maxLength="15" nullable="true"
/>

 <Attribute name="issuerName" javaType="String" columnName="PROD_GEN_ISSUER_N" maxLength="30"
 truncate="true"
/>

 <Attribute name="issuerNumber" javaType="int" columnName="PROD_ISSUER_NUMBER" nullable="true"
/>

 <Attribute name="description" javaType="String" columnName="PROD_DESC_1_C" maxLength="60" poolable="false"
 truncate="true"
/>

8

Metadata Driven (Continued)

 <Relationship name="synonyms" relatedObject="ProductSynonym" cardinality="one-
to-many"

 reverseRelationshipName="product"
>ProductSynonym.productId = this.productId
 </Relationship>

 <Relationship name="history" relatedObject="ProductHistory" cardinality="one-
to-many"

 reverseRelationshipName="product"
>this.productId = ProductHistory.productId
 </Relationship>

 <Relationship name="currencySynonym" relatedObject="ProductSynonym" cardinality="one-
to-one"
>
 ProductSynonym.productId =

9

Metadata Driven (Continued)

 this.productId and ProductSynonym.type
 = "CID"
 </Relationship>

 <Relationship name="parentProduct" relatedObject="Product" cardinality="many-
to-one"
>
 ProductRelation.productChildId =
 this.productId
 and Product.productId =
 ProductRelation.productParentId and
 ProductRelation.relationshipType in (3200,
 3214, 9800, 3201, 3202, 3207,
 3208, 3209, 3210)
 </Relationship>
 <Index name="byGsn" unique="true"
>gsn</Index>
 </MithraObject>

10

Code Generation

Why?

• DRY: use the metadata to its fullest

• Quality: code written by domain experts

• Consistency: code is the same for all objects. Fixes/enhancements
are propagated to all instances.

• Productivity: developers are freed to code the business logic
instead of plumbing

How?

• JAXB XML parser: fast, easy to use

• Java based templates (similar to Eclipse JET): no need to learn
another syntax. Supported by existing IDE’s (code completion,
syntax highlighting, etc)

• JavaCC based relationship expression parser

• Extensible style code generation: generate abstract classes.

11

Object Oriented Query Language

• Compile time checked: if something changes, problems will be
found earlier

• No strings: easy to reuse and abstract

• Overcomes some shortcomings of SQL: "Do not repeat
yourself" (DRY) principle applied to relationships between objects

• Developers think in terms of objects and their relationships, not
tables and joins.

• In-line SQL is difficult to write, harder to reader and nearly
impossible to maintain

• In-line SQL is difficult to abstract and reuse

• String based solutions (e.g. HQL, OQL, EQL, etc) do not solve
these issues

• Reladomo uses an object oriented query language that fits
comfortably within the programming environment:

12

In-line SQL Example

public void selectTransactions()
throws TransactionQueryException, SQLException,
 CriteriaException
{
 this.createUpdateStatementWrapper();
 try
 {
 StringBuffer sb = new StringBuffer();
 sb.append(" select BTV.*, NPV.NPV, F.RATE,
 NPV.RAW_UNREAL, NPV.DISC_UNREAL, NPV.ADJ_NPV ");
 sb.append(" into #tran_union ");
 sb.append(" from BASIC_TRANSACT_VIEW BTV,
 #accounts A, FX_FORWARD_NPV NPV,
 SECDB_FOREX_RATE F, TCURRENCY C ");
 sb.append(" where BTV.ACCT_ID = A.ACCT ");
 sb.append(" and BTV.TRAN_ID = NPV.TRAN_ID
 ");

13

In-line SQL Example (Continued)

 sb.append(" and BTV.TRUE_STATUS = 'ACTIVE'
 ");
 sb.append(" and BTV.OUT_Z >= ? ");

 this.addTimestampParameter(this.getBasicDateProvider().fetchCheckPoint(this.getBasicDateProvider().getAsOfDate()));
 sb.append(" and BTV.IN_Z < ? ");

 this.addTimestampParameter(this.getBasicDateProvider().fetchCheckPoint(this.getBasicDateProvider().getAsOfDate()));
 sb.append(" and BTV.TRAN_SETTLE_D > ? ");

 this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
 sb.append(" and NPV.FROM_Z < ? ");

 this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());

14

In-line SQL Example Continued

sb.append(" and NPV.THRU_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
sb.append(" and NPV.IN_Z < ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append(" and NPV.OUT_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append("and F.CURRENCY = 'USD' ");
sb.append(" and BTV.TRAN_SETTLE_D = F.VALUE_DATE");
sb.append(" and F.FROM_Z < ? ");
this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
sb.append(" and F.THRU_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getAsOfDate());
sb.append(" and F.IN_Z < ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append(" and F.OUT_Z >= ? ");
this.addTimestampParameter(this.getBasicDateProvider().getEternity());
sb.append(" and BTV.PROD_SEC_ID_I =
 C.PROD_SEC_ID_I");
this.getStatementWrapper().setStatementString(sb.toString());

15

In-line SQL Example Continued (Continued)

this.executeUpdateStatement();
}
catch (DataStoreException e)
{
this.getLogger().error(e);
}
}

16

Object Oriented Query Example

public List buildOperation
 (PnlObjectOperationProvider pnlObjectOpProvider,
 ProductOperationProvider
productOpProvider, ParaDate milestoneBusinessDate,
 ActivityReviewManager activityReviewManager)
{
 this.activityReviewManager =
 activityReviewManager;
 ParaTransactionList basicTranList = new
 ParaTransactionList();
 List tranList
 = this.buildBusinessDateBasicTransactionOperation(pnlObjectOpProvider,
 productOpProvider,
 milestoneBusinessDate);
 for(int i = 0; i< tranList.size(); i++)
 {
 ParaTransactionList itemList =
 (ParaTransactionList)tranList.get(i);

17

Object Oriented Query Example (Continued)

 Timestamp busDate = new
 Timestamp(milestoneBusinessDate.getTime());
 businessDate = busDate;
 Operation op =
 itemList.getOperation().and(ParaTransactionFinder.status().eq("ACTIVE"))

 .and(ParaTransactionFinder.settleDate().greaterThan(busDate));

 op =
 op.and(getStringOperation(getActivityReviewManager().getCounterPartyNumber(),ParaTransactionFinder.customerTransaction().crossAccount()));
 basicTranList.add(new
 ParaTransactionList(op));

 basicTranList.deepFetch(ParaTransactionFinder.underlierTransactions());

 basicTranList.deepFetch(ParaTransactionFinder.customerTransaction());
 }
 return basicTranList;
}

18

Object Oriented Query Language

How?

• Atomic (equals, in, greaterThan, lessThan, etc)

• Mapped (traversing a relationship, aka join)

• Boolean (and, or)

• Miscellaneous (all, absolute value, etc)

• Non-trivial: Large part of the Reladomo code base (> 20%)

• Various types of operations

• Before evaluation of a complex operation, it’s simplified.

• Operation is evaluated against the cache (if applicable) and then
the server

• SQL generation can be a bit tricky (especially for dated objects)

19

Testable Code

Why?

• Testable code has become an indispensable part of our
development methodology

• Persistent objects are traditionally difficult to unit test because
they’re tied to a database

• The core Reladomo code was written using test driven
development

How?

• The crux of the code is processing of data.

• Reladomo-enabled testing covers > 80% of the code.

• Result: shortened development time, highly reliable code with very
few bugs encountered in production.

• Create a test resource: text file for initial data + in memory SQL
database (H2)

• Reladomo provides a simple testing framework that fits right into
Junit.

20

Testable Code (Continued)

• All operations are supported: query, insert, update, delete,
chaining, etc.

• Examples: Large production application

21

Flexible Relationships

Why?

• Relationships between objects can take interesting forms in real
life.

• Can dramatically reduce IO to the database. Can also be used for
interesting searches.

• Two common examples: a parametrized relationship, or a
relationship with extra conditions.

How?

• This feature works because of Reladomo’s dynamic relationship
resolution. Examples: Relationships from Product

<Relationship name="parentProduct" relatedObject="Product" cardinality="many-
to-one"
>
 ProductRelation.productChildId =
 this.productId and Product.productId =
 ProductRelation.productParentId and

22

Flexible Relationships (Continued)

 ProductRelation.relationshipType in (3200,
 3214, 9800, 3201, 3202, 3207, 3208, 3209, 3210,
 3211)
</Relationship>
<Relationship name="synonymItem" relatedObject="ProductSynonym" cardinality="one-
to-one"
 parameters="String sym"
>
 ProductSynonym.productId = this.productId and
 ProductSynonym.type = {sym}
</Relationship>

23

Chaining

Chaining is an umbrella term that describes a way of storing time
series data, audit data or both in a relational database. The different
versions (audit only, time series only and bitemporal) are described
below.

• 1.Audit Only

• 2.Business Time Series Only

• 3.Both Audit and Business Time Series: Bitemporal

24

Chaining

Why?

• Chained objects are queried and persisted differently

• Chained objects don’t have the same operations (insert, update,
delete) as regular objects

• Chained objects support more complicated operations: insert,
insert until, update, update until, increment, increment until,
terminate.

• Chaining is complicated

• The algorithm is only maintainable if it’s managed from one single
piece of code

• Chaining affects the core of object-relational mapping. It is very
difficult to implement chaining as an add-on to an existing OR
framework.

25

Chaining

How?

• Not a large piece of code (6%), but complicated: 30% of test code
is just for chaining

• Information held in a single object is usually not enough to
calculate new state

• Object delegates complex operations to the TemporalDirector

• TemporalDirector uses TemporalContainer to calculate new state

• TemporalContainer keeps data for a range of dates. Can fetch
more from the database, on demand.

• TemporalContainers are held in the transactional cache and
discarded at end of transaction

26

Audit Only Chaining

Here is an example of this type of audit trail for an account object.
The account was created on 1/1/2005:

On 2/5/2005, the trader changes to Jane Doe:

27

Audit Only Chaining

• The IN and OUT columns represent real time. They have nothing
to do with the business calendar.

• The interesting row (meaning, the row we think has the correct
information) always has OUT = Infinity

• There is no way to alter the history. The only allowed update
operation to a row is to change its OUT value from infinity to
current time.

28

On 1/1/2005, we buy 100 shares of a product. We always do our
accounting at 6:30 pm (even if it takes several hours, our business
calendar is set to 6:30 pm):

On 2/5/2005, we buy another 100 shares:

So far, this looks very much like the first example. To clarify the
difference, we can do an "as of trade". On 2/10/2005, we find out that
we missed a trade for 50 shares that happened on 1/15/2005:

29

Let’s consider the same example

We now add 100 on 2/5/2005:

On 2/10/2005, we find a trade that was done on 1/15/2005 for 50
shares:

30

(Continued)

31

Collections Based Operations

• Prepared statement batching: reuse the same statement multiple
times. X 2 performance improvement

• Use of SQL statements that update more than one row at a time. X
50 performance improvement

• Two types of batching:

• Collections are a core of the Reladomo API.

• Example mass delete:

Operation op =
 SwapPriceFinder.sourceId().eq(id); op =
 op.and(

 SwapPriceFinder.businessDate().eq(busDate));

op =
 op.and(SwapPriceFinder.feedNumber().eq(feedNumber));

SwapPriceList priceList = new SwapPriceList(op);

32

Collections Based Operations (Continued)

priceList.deleteAll();

• 65,583 rows took 562 seconds without deleteAll implementation.
With the implementation it took 12 seconds.

• Deep Fetching: a better approach to relationship resolution

• Collections based operations make Reladomo suitable for most
types of large retrievals (report style), OLTP, and batch style
processing.

33

Collections Based Operations

Why?

• Reduce object relational impedance mismatch

• Reduced chattiness

• Performance

How?

• Investigating pure Java alternative to file generation

• List object used as gateway to collective operations

• Special SQL generation for mass/bulk operations

• Deep fetch uses joins: solves 1+N problem

• BCP support for Sybase: 5x faster than plain insert

34

Transparent Multi-schema Support

• For scalability, we’ve partitioned ledger data into a large number of
databases (about 150). The schema is identical in these database,
but the data is different.

• The class of objects can therefore be retrieved from multiple
sources

• Traditional ORMs have difficulty keeping objects tied to the original
source. This is particularly a problem with caching.

• We even have transactions that read from one database and write
to another. That is, the access patterns are not necessarily one-
database-at-a-time.

• Support for this is built into the core of Reladomo.

35

Transparent Multi-schema Support

Why?

• Transaction 123 in Database A can be 100 shares of IBM

• Transaction 123 in Database B can be 300 shares of BMW

• When both objects are loaded, they must not be confused.

• How an object is identified must include where the object came
from:

• Enables horizontally scalable solutions

How?

• Metadata includes special attribute (SourceAttribute)

• All operations (find, insert, update, delete) use this attribute to
obtain the proper connection.

36

Caching

Why?

• Uniquing: an object with a given primary key must correspond to
exactly one memory location

• Performance

• Reduced IO and latency

How?

• Can be configured as none, partial (dynamic) or full on a per class
basis.

• Can be bypassed on a per query basis.

• Cache is a searchable set of indices. An index is a keyless set.

• Queries are cached in the query cache. Also facilitates deep
fetched relationships.

• Transaction disregards pre-transaction cached results.

• Partial cache can only answer queries based on unique identifiers.

37

Three Tier Operation

Why?

• User ID must not be able to access database directly (especially
write)

• Batch/App ID must not be used from unauthorized IP’s (see PACT
AppFilter)

• For a large, semi-mobile user community, maintaining IP lists is
undesirable and opens iSQL hole

• Security (fat client applications):

• Connection sharing: database connections can be expensive.
Many users can share same connection.

How?

• Third tier acts like a relational source. Supports relational-like
operations: find, insert, update, delete.

• No object graphs. Not a complex object source. Serializaton based
on metadata. Wire format looks like a result set.

• Lightweight: can be configured as pass-through with no caching.

38

Three Tier Operation (Continued)

• Remoting API must be implemented by application.

39

Notification

Why?

• Allow multiple VM’s to independently update data.

• Polling considered harmful ("Are we there yet?" syndrome)

How?

• At the end of a transaction, message is constructed. Message
contains the primary keys for objects that were inserted/updated/
deleted. Message is sent to a topic that encodes the database
identity.

• Listeners only register interest in databases they have accessed.
Upon receipt of message, any objects (if any) are marked as dirty.

• Asynchronous message processing to avoid messaging and IO
bottlenecks in application’s main flow.

• Messaging API can be implemented by application. RV
implementation provided.

• Notification is entirely independent of three tier operation. Most
important production uses are in two tier scenarios. Notification is
off by default.

40

Notification

Examples:

• Posting Engine creates an account. Adjustment server processes
a request for the trial or income function containing the new
account some time later.

• Age Inventory Firm to Firm processor on Desk A updates
age transfer status. Age Inventory Firm to Firm processor on
corresponding desk will see new status.

• Posting Engine updates feed status. Notification is sent for the
status object. Next time a controller queries for status, they will not
get stale results.

41

RUNS Integration

Why?

• Replication from remote sources can cause staleness.

• For low volume update data (e.g. account data) hitting database all
the time is wasteful.

• Object metadata can be used the same way with RUNS tables as
regular tables.

• Staleness typically exasperated because objects are configured as
read only.

How?

• Application configuration flags objects that are replicated.

• Background thread reads RUNS queue tables periodically.

• Send notification based on primary key found in RUNS child tables

• Clear RUNS tables.

• Fully optional. Can be setup as a lightweight, independent
process.

42

DDL Generator

Why?

• Metadata contains all necessary data. DRY: get the DDL from the
metadata.

• Productivity: DDL files are hard to write and maintain.

• Junior developers have problems writing DDL files, especially
index creation.

How?

• Based on the metadata and target database type, emit DDL.

• Hardest part is generating decent indices. Primary key index is
easy. Foreign key indices are based on defined relationships.

43

Generate metadata from existing schema

Why?

• Large legacy systems can be converted quickly and painlessly.

How?

• Create object definition from table definition.

• Choose object primary key based on unique index.

44

Long term plan

• Feedback is the most valuable thing. What’re we doing right or
wrong?

• What features would make your code better?

• If you find a bug, a test case would be exceptionally helpful.

• If you’re feeling adventurous, contribute code!

• The direction of Reladomo is set by its users.

• Help us make Reladomo a better product:

45

	
 Reladomo: An Object Relational Mapping Framework

	
 Agenda

	
 Reladomo Features

	
 Reladomo Features

	
 Metadata Driven

	
 Metadata Driven

	
 Code Generation

	
 Object Oriented Query Language

	
 In-line SQL Example

	
 In-line SQL Example Continued

	
 Object Oriented Query Example

	
 Object Oriented Query Language

	
 Testable Code

	
 Flexible Relationships

	
 Chaining

	
 Chaining

	
 Chaining

	
 Audit Only Chaining

	
 Audit Only Chaining

	
	
	
 Collections Based Operations

	
 Collections Based Operations

	
 Transparent Multi-schema Support

	
 Transparent Multi-schema Support

	
 Caching

	
 Three Tier Operation

	
 Notification

	
 Notification

	
 RUNS Integration

	
 DDL Generator

	
 Generate metadata from existing schema

	
 Long term plan

